On the Conjecture of Meinardus on Rational Approximation of e^{x}, II

Dietrich Braess
Institut für Mathematik, Ruhr-Universität Bochum, 4630 Bochum I, West Germany

Communicated by P. L. Butzer
Received March 18, 1983

Introduction

Recently D. J. Newman [4] and the author [1] have established upper and lower bounds for the degree of approximation when e^{x} is approximated by rational functions on the interval $[-1,+1]$. The bounds differ from the value conjectured by Meinardus [2, p. 168] only by constants. Here we will show that Meinardus' conjecture is true as it stands.

This paper is concerned with Meinardus' conjecture on uniform approximation of e^{x} on the interval $[-1,+1]$ by (m, n) - degree rationals, i.e., by rational functions whose numerator and denominator have degrees m and n, respectively. Meinardus, in his monograph [2, p. 168], conjectured that $E_{m, n}$, i.e., the distance of e^{x} to the rationals, measured by the sup-norm in $C \mid-1,+1]$, has the following asymptotic behavior:

$$
\begin{equation*}
E_{m, n}=\frac{n!m!}{2^{n+m}(n+m)!(n+m+1)!}(1+o(1)) \quad \text { as } \quad n+m \rightarrow \infty . \tag{1}
\end{equation*}
$$

The crucial point here and in the previous estimates is an observation made by Newman: Let p / q be an (m, n)-degree rational. Given $x \in[-1,+1]$, put $z=(x+i y) / 2$ with y real, $x^{2}+y^{2}=1$. Then $R(x)=p(z) p(\bar{z}) /[q(z) q(\bar{z})]$ is also an (m, n)-degree rational function in the variable x. Since $e^{x}=e^{2} e^{z}$, we have

$$
\begin{equation*}
e^{x}-R(x)=2 \operatorname{Re} e^{\bar{z}}\left(e^{z}-\frac{p(z)}{q(z)}\right)-\left|e^{z}-\frac{p(z)}{q(z)}\right|^{2} \tag{2}
\end{equation*}
$$

In the sequel only cases are considered where the second term is small when compared with the first one. Moreover assume that $p-e^{2} q$ has $n+m+1$ zeros in the domain $|z| \leqslant \frac{1}{2}$ but there q has none; this happens, e.g., when p / q is the Pade approximant. Then by a winding number argument one concludes that $e^{x}-R(x)$ alternates $(n+m+1)$-times [1]; one gets a lower bound from the theorem of de la Vallee-Poussin, which together with the obvious upper bound reads

$$
\begin{equation*}
2 \min _{|z|-\frac{1}{2}}\left|e^{z}\left(e^{z}-\frac{p}{q}\right)\right| \leqslant E_{m, n}(1+o(1)) \leqslant 2 \max _{|z|=\frac{1}{2}}\left|e^{z}\left(e^{z}-\frac{p}{q}\right)\right| . \tag{3}
\end{equation*}
$$

Therefore we are interested in constructing rationals p / q such that $\left|e^{z}\left(e^{z}-p / q\right)\right|$ varies only little on the circle $|z|=\frac{1}{2}$.

2

We will start with the (m, n)-Pade approximant which is given by

$$
\begin{equation*}
p(z)=\int_{0}^{\infty} t^{n}(t+z)^{m} e^{-t} d t, \quad q(z)=\int_{0}^{\infty}(t-z)^{n} t^{m} e^{t} d t . \tag{4}
\end{equation*}
$$

First we derive an asymptotic property of the remainder term

$$
\begin{aligned}
p(z)-e^{z} q(z) & =\int_{0}^{\alpha} t^{n}(t+z)^{m} e^{-t} d t-\int_{0}^{-x}(t-z)^{n} t^{m} e^{-t+z} d t \\
& =\int_{0}^{-=} t^{n}(t+z)^{m} e^{-t} d t \\
& =(-1)^{n+1} z^{n+m+1} \int_{0}^{1} u^{n}(1-u)^{m} e^{u z} d u
\end{aligned}
$$

After inserting the Taylor's series for the exponential function the integral above becomes

$$
\begin{align*}
\int_{0}^{1} u^{n} & (1-u)^{m} \sum_{k-0}^{\infty} \frac{1}{k!} u^{k} z^{k} d u \\
& =\sum_{k=0}^{\infty} \frac{m!(n+k)!}{(n+m+k+1)!} \frac{z^{k}}{k!} \tag{5}\\
& =\frac{m!n!}{(n+m+1)!} \sum_{k=0}^{\infty} \frac{(n+1)_{k}(n+m)^{k}}{n^{k}(n+m+2)_{k}} \frac{1}{k!}\left(\frac{n}{n+m} z\right)^{k}
\end{align*}
$$

Here the convention $(a)_{k}:=a(a+1) \cdots(a+k-1)$ known from hypergeometric functions is used. Now we recall a simple observation on sequences of power series. Let

$$
\psi_{v}(z)=\sum_{k=0}^{\infty} a_{k v} \frac{z^{k}}{k!}, \quad v=1,2, \ldots
$$

with $\left|a_{k v}\right| \leqslant 1$ and $\lim a_{k v}=0$ for each k. Then $\sup \left\{\left|\psi_{v}(z)\right|,|z| \leqslant 1\right\}$ tends to zero. From (5) we conclude

$$
\begin{equation*}
e^{z} q(z)-p(z)=\frac{m!n!}{(m+n+1)!}(-1)^{n+1} z^{n+m+1} e^{(n /(n+m)) z}\left(1+\psi_{1}(z)\right) \tag{6}
\end{equation*}
$$

where $\psi_{1}(z),[z]<1$, becomes arbitrarily small as $n+m \rightarrow \infty$. To be more specific, from (5) first a small additive correction to the exponential function is obtained which is changed into a multiplicative term.

In the same spirit from (4) an asymptotic formula for q is derived after the binomial formula is applied to $(t-z)^{n}$:

$$
\begin{equation*}
q(z)=(n+m)!e^{-(n /(n+m)) z}\left(1+\psi_{2}(z)\right) . \tag{7}
\end{equation*}
$$

For an estimate of the correction term, $\left|\psi_{2}(z)\right| \leqslant|z|^{2} e^{2|z|} /(2 m+2 n)$, the reader is referred to [5, p. 248]. From (6) and (7) it follows that

$$
\begin{equation*}
e^{z}\left(e^{z}-\frac{p(z)}{q(z)}\right)=\frac{n!m!(-1)^{n}}{(n+m)!(n+m+1)!} z^{n+m+1} e^{\alpha z}(1+o(1)) \tag{8}
\end{equation*}
$$

where $\alpha=1+2 n /(n+m)$. We note that $1 \leqslant \alpha \leqslant 3$.

4

The function (8) [more precisely its modulus] is not constant on the circle $|z|=\frac{1}{2}$ mainly because $e^{\alpha z} z^{n+m+1}$ is not. On the other hand by choosing z_{0} appropriately we can achieve that

$$
\begin{equation*}
\left|e^{\alpha z}\left(z-z_{0}\right)^{n+m+1}\right| \tag{9}
\end{equation*}
$$

deviates very little from a constant on that circle.

It is easily checked by some elementary calculations that

$$
e^{-2 /(3 t)} \leqslant\left|e^{z}\left(z-\frac{1}{t}\right)^{t}\right| \leqslant e^{+2 /(3 t)}, \quad|z|=1, t \geqslant 3 .
$$

After taking the $(\alpha / 2)$ th power of these inequalities, with z replaced by $2 z$ and with $N=\alpha t / 2$ we get

$$
e^{-\alpha^{2} /(6 N)} \leqslant 2^{N}\left|e^{\alpha z}\left(z-\frac{\alpha}{4 N}\right)^{N}\right| \leqslant e^{+\alpha^{2} /(6 N)}, \quad|z|=\frac{1}{2} .
$$

Consequently, when putting $N=n+m+1, z_{0}=\alpha /[4(n+m+1)]$ we get a close-to-circularity property for (9).

5

Let z_{0} be as above. Then $\tilde{p}(z) / \tilde{q}(z)=e^{z_{0}} p\left(z-z_{0}\right) / q\left(z-z_{0}\right)$ is the Pade approximant to e^{z} at z_{0}. From
$e^{z}\left(e^{z}-\frac{\tilde{p}(z)}{\tilde{q}(z)}\right)=\frac{n!m!(-1)^{n}}{(n+m)!(n+m+1)!}\left(z-z_{0}\right)^{n+m+1} e^{\alpha z}(1+o(1))$
where $(1+o(1))=e^{(2-\alpha) z_{0}}\left(1+\psi_{1}\left(z-z_{0}\right)\right)\left(1+\psi_{2}\left(z-z_{0}\right)\right)^{-1}$, it follows that Meinardus' conjecture is true.

The result remains true if the approximation problem with the weight function $w(x)=e^{-x}$ is considered [3]. Only the exponent α has to be replaced by $\alpha-2$. In each case a rational function is constructed such that the error curve is near to a circular one [6].

Acknowledgments

[^0]Note added in proof. For analogous investigations of rational approximation of \sqrt{x} the reader is referred to [7].

References

1. D. Braess, On the conjecture of Meinardus on rational approximation of e^{x}, J. Approx. Theory 36 (1982), 317-320.
2. G. Meinardus, "Approximation of Functions: Theory and Numerical Methods," Springer, New York, 1967.
3. G. Nemeth, Relative rational approximation of the function e^{x}, Math. Notes 21 (1977), 325-328.
4. D. J. Newman, Rational approximation to e^{x}, J. Approx. Theory 27 (1979), 234-235.

5 O. Perron, "Die Lehre von den Kettenbrüchen, II," 3 Aufl., Teubner, Stuttgart, 1957.
6. L. N. Trefethen, Near circularity of the error curve in complex Chebyshev approximation, J. Approx. Theory 31 (1981), 344-367.
7. D. Braess, On rational approximation of the exponential and the square root function. In "Rational Approximation and Interpolation" (P. R. Graves-Morris, E. B. Saff, R. S. Varga, eds.). Springer, Heidelberg-New York, 1984.

[^0]: I am indebted to H . Werner and L. Wuytack as their invitation to the Conference on Pade approximation in Bad Honnef motivated me to look once more at Meinardus' conjecture. Moreover, I want to thank Bill Gragg for several suggestions on the numerical evidence for the conjecture.

