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INTRODUCTION

Recently D. J. Newman [4] and the author [1] have established upper and
lower bounds for the degree of approximation when eX is approximated by
rational functions on the interval [-1, +1]. The bounds differ from the value
conjectured by Meinardus [2, p. 168] only by constants. Here we will show
that Meinardus' conjecture is true as it stands.

This paper is concerned with Meinardus' conjecture on uniform approx
imation of eX on the interval [-1, +1] by (m, n) - degree rationals, i.e., by
rational functions whose numerator and denominator have degrees m and n,
respectively. Meinardus, in his monograph [2, p. 168], conjectured that Em,n'
i.e., the distance of eX to the rationals, measured by the sup-norm in
C[-I, +1], has the following asymptotic behavior:

E _ n!m!
m,n - 2n+m(n +m)! (n +m + I)! (1 +0(1» as n + m -t 00. ( 1)

The crucial point here and in the previous estimates is an observation made
by Newman: Let plq be an (m, n)-degree rational. Given x E [-1, +1], put
z = (x + iY)/2 with y real, x 2+ y2 = 1. Then R(x) = p(z) p(z)1 [q(z) q(i)] is
also an (m, n)-degree rational function in the variable x. Since eX = eZe', we
have

eX _ R(x) = 2 Re e' (e z _ P(Z») _I eZ _ p(z) \2.
q(z) q(z)
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In the sequel only cases are considered where the second term is small when
compared with the first one. Moreover assume that p - eZq has n + m + I
zeros in the domain 1z I ~ ! but there q has none; this happens, e.g., when pjq
is the Pade approximant. Then by a winding number argument one
concludes that eX - R(x) alternates (n +m + I)-times [I]; one gets a lower
bound from the theorem of de la Vallee-Poussin, which together with the
obvious upper bound reads

2 min I e
Z

(e
z -~) I ~ Em.n(l + 0(1» ~ 2 ma~ I e

Z
(e= -~) I· (3)

!ZI-i q IZI~y q

Therefore we are interested in constructing rationals pjq such that
1 eZ(eZ- pjq)1 varies only little on the circle 1 z 1 = !.

2

We will start with the (m, n)-Pade approximant which is given by

.CD

p(z) = J
o

tn(t + z)m e t dt,
,. rJ~

q(z) = I (t - zy tme t dt.
'0

(4 )

First we derive an asymptotic property of the remainder term

.~j .~

p(z) - eZq(z) = J tn(t + z)m e- t dt -I (t - zy tme- t +: dt
o -0

= r- =tn(t + z)m e- t dt
-0

.1
= (_l)n+ 1zn.,.m.,.1 I un(l - u)m eUz duo

-0

After inserting the Taylor's series for the exponential function the integral
above becomes

.1 oc· I
J un(l - u)m ~ I" UkZ

k du
o k- 0 k.

~ m!(n + k)! Zk (5)
~o (n + m + k + I)! k!

m!n! f (n+ Ih(n+m)k I ( n)k
(n + m + I)!:-::-o nk(n + m + 2)k k! n + m z .
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Here the convention (a)k := a(a + 1) '" (a + k - 1) known from
hypergeometric functions is used. Now we recall a simple observation on
sequences of power series. Let

v = 1,2,... ,

with Iakvl ~ 1 and lim akv = 0 for each k. Then sUPll 'IIv(z)l, Iz 1~ 1}tends to
zero. From (5) we conclude

m!n!
Z () () (_l)n+ I zn+m+ le<n/(n+m»)z(1 + lI/](z)), (6)

e q z - p z = (m + n + 1)! 'f'

where 'III (z), [z] < 1, becomes arbitrarily small as n +m ---> 00. To be more
specific, from (5) first a small additive correction to the exponential function
is obtained which is changed into a multiplicative term.

3

In the same spirit from (4) an asymptotic formula for q is derived after the
binomial formula is applied to (t - zy:

q(z) = (n +m)! e-<n/(n+m»)z(1 + '112(Z)). (7)

For an estimate of the correction term, 1'112 (z)1 ~ Izl 2 e2lZl j(2m +2n), the
reader is referred to [5, p. 248]. From (6) and (7) it follows that

Z (z P(Z)) n!m!(_1)n n+m+l nZ(1 (1))e e --- = z e +0
q(z) (n+m)!(n+m+1)!

where a = 1 + 2nj(n + m). We note that 1~ a ~ 3.

4

(8)

The function (8) [more precisely its modulus] is not constant on the circle
IZ 1= -! mainly because e nzzn +m + I is not. On the other hand by choosing Zo

appropriately we can achieve that

(9)

deviates very little from a constant on that circle.
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It is easily checked by some elementary calculations that

Izl=l,t~3.

After taking the (a/2)th power of these inequalities, with z replaced by 2z
and with N = at/2 we get

Consequently, when putting N = n +m + 1, Zo = a/[4(n +m + 1)] we get a
close-to-circularity property for (9).

5

Let Zo be as above. Then p(z)jq(z) = eZop(z - zo)/q(z - zo) IS the Pade
approximant to eZ at zoo From

(
P~(z) ) n'm'(-I)neZ eZ- -- = .. z _ Z n + m + I enz 1 + 0 1
ij(z) (n+m)!(n+m+l)!( 0) «» (10)

where (1 +o( 1» = e(2-n)z0(1 + II! 1(z - zo»(1 + 1I!2(Z - zo» - I, it follows that
Meinardus' conjecture is true.

The result remains true if the approximation problem with the weight
function w(x)=e- x is considered [3]. Only the exponent a has to be
replaced by a - 2. In each case a rational function is constructed such that
the error curve is near to a circular one [6].
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Note added in proof For analogous investigations of rational approximation of vrx the
reader is referred to [7].
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